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Abstract

The catalytic enantioselective epoxidation of the isoflavones 1a—f has been performed by the Mn(Ill)salen
complexes (R,R)-3 and (S,S5)-3 as catalysts and dimethyldioxirane as the oxygen-atom source to afford optically
active isoflavone epoxides 2a—f. The absolute configuration of the nonracemic epoxides 2 have been determined
by X-ray diffraction analysis. Our present results constitute the first examples of the preparation of optically active
isoflavone epoxides. © 1998 Elsevier Science Ltd. All rights reserved.

The Jacobsen’s Mn(III)salen complexes have proven to be highly efficient catalysts for the enantiose-
lective epoxidation of simple cis-olefins by using various oxygen donors, e.g. NaOCl, H,0,, n-BusIO4
and iodosobenzene.! Recently we have demonstrated that a novel combination of such Mn(III)salen
complexes and isolated dimethyldioxirane (DMD)?> may be advantageously utilized for the enantios-
elective epoxidation of 2,2-dimethyl-2H-chromenes.> Our results constitute an important contribution
on the applicability of DMD for the enantioselective epoxidation. In view of its achiral structure, the
convenient and versatile DMD* had to be used as an oxygen source in conjunction with a chiral catalyst
to obtain optically active oxyfunctionalized products. We report herein the adoption of this protocol for
the enantioselective epoxidation of isoflavones, electron-poor substrates, for which no direct catalytic
asymmetric oxidation exists so far.

Isoflavones are well-known natural products isolated from various plants.> The first representatives
of their epoxides were synthesized either by an intramolecular Darzens reaction of -bromo-
o-acyloxyacetophenones® or by the Weitz—Scheffer alkaline hydrogen peroxide epoxidation of
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isoflavones.” In our own experiments, dimethyldioxirane proved to be a convenient and effective
oxidant to provide the epoxides of isoflavones and their glycosides in high yields under neutral
conditions.® However, it has also turned out that the presence of the chiral sugar auxiliary does not
exercise any enantiofacial selectivity during the dimethyldioxirane epoxidation and a 1:1 mixture of the
diastereomeric epoxides were obtained in each case.3?

The enantioselective epoxidation of the isoflavones 1a~f has been performed with the complexes (R, R)-
3 and (§,5)-3 by using isolated DMD (ca. 0.05-0.1 M acetone solution)? as an oxygen source (Scheme 1).
The results in Table 1 show that the use of 14-16 mol% catalyst, together with 6-10 equiv. of DMD,?
provides optically active isoflavone epoxides 2a—f in moderate yields. The low yields are a consequence
of incomplete conversion of the starting material in view of the electron-poor nature of the substrates. The
enantioselectivities varied within the range of 20 to 92% e.e., which depended on the substitution pattern
of the starting isoflavone (Scheme 1 and Table 1). It is worth emphasizing that substrates with methoxy-
substituted aryl groups, as in derivatives le and 1f are epoxidized in considerably higher enantiofacial
selectivity (cf. Table 1).
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Scheme 1.

The structures of the epoxides 2a~f have been confirmed by microanalysis and NMR spectroscopy.
In the '"H NMR spectra, the disappearance of the singlet signal of the 2-H proton at ca. 7.9 ppm,
characteristic of the isoflavone skeleton, and the appearance of a singlet signal at about 5.5 ppm assigned
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Table 1
Enantioselective epoxidation of isoflavones 1a=f by the Mn(IlI)salen/DMD oxidant™®
Epoxide* DMD Catalyst Yield® M.p. [alp® ee (%)  ee (%)
(eq) (mol%) (%) C) (c=1, CHCl;) (‘HNMR) (HPLC)
(l1aR,7aS)-2a 9 14 31 oil -152.9 54 52
(1aS,7aR)-2a 9 14 34 oil +200.0 56 65
(/aR,7aS)-2b 6 14 27 124-126 -122.4 40 37
(1aS,7aR)-2b 6 14 36 124-125 +103.3 42 39
(1aR,7aS)-2¢ 10 14 22 118-120 -46.7 18 21
(1aS,7aR)-2¢ 10 14 27 117-119 +59.8 34 48
(/aR 7aS)-2d 10 16 39 159-161 -112.2 52 47
(/aS,7aR)-2d 10 16 29 160-161 +65.4 28 22
(1aR,7aS)-2¢ 6 16 31 126-128 -122.2 80 82
(1aS,7aR)-2¢ 6 16 32 127-129 +125.7 86 86
(1aR, 7aS)-2f 6 16 25 144-145 -58.0 72 72
(1asS,7aR)-20 6 16 23 145-146 +86.7 92 90
" Used as 0.05-0.1 M acetone solution. “Reaction time is 10 days. © All new compounds gave satisfactory
microanalysis (C,H) data. ‘Isolated material *Measured on a Perkin-Elmer 241 polarimeter.

f Determined in CDC}; solution at room teperature (ca. 20 °C) by using tris[3-(heptafluroro-propylhydroxymethylene)-d-
camphoratojeuropium(III) as optically active NMR shift reagent. EMeasured by HPLC (Chiralcel OD, 9:1 n-hexane/2-
propanol, flow 0.6 ml/min).

to the 1a-H proton of the isoflavone epoxides,® establish the presence of the oxirane ring. Characteristic
chemical shift values of the C-1a (83-84 ppm) and C-7a (62-64 ppm) atoms in the !3C NMR spectra
also corroborate the epoxide structure. The absolute configuration of the nonracemic epoxides 2f have
been determined by X-ray analysis (Fig. 1).

In summary, our results unequivocally demonstrate that the combination of the optically active Jacob-
sen’s Mn(III)salen catalysts and dimethyldioxirane as the oxygen donor may be used successfully for the
enantioselective epoxidation of even such electron-poor substrates as the isoflavones. Isoflavones, which
necessarily possess a trisubstituted olefinic double bond in conjugation with a carbonyl group, represent
substrates with functionality of higher complexity, which have been epoxidized enantioselectively by
Mn(III)salen complexes to afford the optically active isoflavone epoxides by the first catalytic process.
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